Shannon: Skillnad mellan sidversioner

Från Täpp-Anders
Hoppa till navigering Hoppa till sök
Ingen redigeringssammanfattning
Rad 18: Rad 18:
<math>\approx 2\cdot 10^5 \log_2(8,943)</math>
<math>\approx 2\cdot 10^5 \log_2(8,943)</math>
<math>\approx 632\ 160\ \mathrm{bit/s}</math>
<math>\approx 632\ 160\ \mathrm{bit/s}</math>
Detta gäller nu för minsa möjliga och den totala bitraten för hela kanalen. Givet en tidlucka dvs 1/8 får vi i stället ca 78 kbit/s.
Den egentliga bitraten i en GSM-kanals enskilda tidlucka är 22,8 kbit/s och modulationen i GSM ger oss alltså 29% av maximalt möjlig överföring vid lägsta S/N.

Versionen från 16 februari 2013 kl. 06.11

Shannons lag ger den maximala överförbara datatakten hos en given överföringskanal vid en viss effekt och ett givet signalbrusförhållande.

Grundformen

Där

I är den informationshastighet i bitar per sekund
B är den bandbredd överföringskanalen har i Hz
S är den totala signalens effekt
N är den totala bruseffekten i mottagaren

Vad lagen säger är alltså att den överförda mängden information i bit/s alltid måste vara mindre än bandbredden multiplicerad med den binära logaritmen av signalbrusförhållandet för överföringskanalen.

Ett exempel på detta är en vanlig GSM-kanal som kräver 9 dB C/I vilket kan översättas till S/N i detta fall, har en bandbredd på 200 kHz och därmed får vi:

Detta gäller nu för minsa möjliga och den totala bitraten för hela kanalen. Givet en tidlucka dvs 1/8 får vi i stället ca 78 kbit/s.

Den egentliga bitraten i en GSM-kanals enskilda tidlucka är 22,8 kbit/s och modulationen i GSM ger oss alltså 29% av maximalt möjlig överföring vid lägsta S/N.