Shannon: Skillnad mellan sidversioner

Från Täpp-Anders
Hoppa till navigering Hoppa till sök
Ingen redigeringssammanfattning
Rad 13: Rad 13:
Vad lagen säger är alltså att den överförda mängden information i bit/s alltid måste vara mindre än bandbredden multiplicerad med den binära logaritmen av signalbrusförhållandet för överföringskanalen.
Vad lagen säger är alltså att den överförda mängden information i bit/s alltid måste vara mindre än bandbredden multiplicerad med den binära logaritmen av signalbrusförhållandet för överföringskanalen.


== Shannon GSM ==
== Shannon om GSM ==
Ett exempel på detta är en vanlig GSM-kanal som kräver 9 dB C/I vilket kan översättas till S/N i detta fall, har en bandbredd på 200 kHz och därmed får vi:
Ett exempel på detta är en vanlig GSM-kanal som kräver 9 dB C/I vilket kan översättas till S/N i detta fall, har en bandbredd på 200 kHz och därmed får vi:


Rad 23: Rad 23:


Den egentliga bitraten i en GSM-kanals enskilda tidlucka är 22,8 kbit/s och modulationen i GSM ger oss alltså 29% av maximalt möjlig överföring vid lägsta S/N.
Den egentliga bitraten i en GSM-kanals enskilda tidlucka är 22,8 kbit/s och modulationen i GSM ger oss alltså 29% av maximalt möjlig överföring vid lägsta S/N.
== Shannon på modemkanal ==
Antag en bandbredd om 3600-300 Hz, dvs 3 500 Hz. Antag S/N 40 dB S/N så får vi följande:
<math>3500 \cdot log_2(1+10^{40/10})</math>
<math>\approx 3500 \cdot log_2(10000)</math>
<math>\approx 46\ 500</math>
Man ser alltså att det krävs bra S/N för att klara 56 kbit/s modem.

Versionen från 16 februari 2013 kl. 06.18

Shannons lag ger den maximala överförbara datatakten hos en given överföringskanal vid en viss effekt och ett givet signalbrusförhållande.

Grundformen

Där

I är den informationshastighet i bitar per sekund
B är den bandbredd överföringskanalen har i Hz
S är den totala signalens effekt
N är den totala bruseffekten i mottagaren

Vad lagen säger är alltså att den överförda mängden information i bit/s alltid måste vara mindre än bandbredden multiplicerad med den binära logaritmen av signalbrusförhållandet för överföringskanalen.

Shannon om GSM

Ett exempel på detta är en vanlig GSM-kanal som kräver 9 dB C/I vilket kan översättas till S/N i detta fall, har en bandbredd på 200 kHz och därmed får vi:

Detta gäller nu för minsa möjliga och den totala bitraten för hela kanalen. Givet en tidlucka dvs 1/8 får vi i stället ca 78 kbit/s.

Den egentliga bitraten i en GSM-kanals enskilda tidlucka är 22,8 kbit/s och modulationen i GSM ger oss alltså 29% av maximalt möjlig överföring vid lägsta S/N.

Shannon på modemkanal

Antag en bandbredd om 3600-300 Hz, dvs 3 500 Hz. Antag S/N 40 dB S/N så får vi följande:

Man ser alltså att det krävs bra S/N för att klara 56 kbit/s modem.