Shannon: Skillnad mellan sidversioner
Anders (diskussion | bidrag) Ingen redigeringssammanfattning |
Anders (diskussion | bidrag) |
||
Rad 13: | Rad 13: | ||
Vad lagen säger är alltså att den överförda mängden information i bit/s alltid måste vara mindre än bandbredden multiplicerad med den binära logaritmen av signalbrusförhållandet för överföringskanalen. | Vad lagen säger är alltså att den överförda mängden information i bit/s alltid måste vara mindre än bandbredden multiplicerad med den binära logaritmen av signalbrusförhållandet för överföringskanalen. | ||
== Shannon på GSM == | |||
Ett exempel på detta är en vanlig GSM-kanal som kräver 9 dB C/I vilket kan översättas till S/N i detta fall, har en bandbredd på 200 kHz och därmed får vi: | Ett exempel på detta är en vanlig GSM-kanal som kräver 9 dB C/I vilket kan översättas till S/N i detta fall, har en bandbredd på 200 kHz och därmed får vi: | ||
Versionen från 16 februari 2013 kl. 06.12
Shannons lag ger den maximala överförbara datatakten hos en given överföringskanal vid en viss effekt och ett givet signalbrusförhållande.
Grundformen
Där
- I är den informationshastighet i bitar per sekund
- B är den bandbredd överföringskanalen har i Hz
- S är den totala signalens effekt
- N är den totala bruseffekten i mottagaren
Vad lagen säger är alltså att den överförda mängden information i bit/s alltid måste vara mindre än bandbredden multiplicerad med den binära logaritmen av signalbrusförhållandet för överföringskanalen.
Shannon på GSM
Ett exempel på detta är en vanlig GSM-kanal som kräver 9 dB C/I vilket kan översättas till S/N i detta fall, har en bandbredd på 200 kHz och därmed får vi:
Detta gäller nu för minsa möjliga och den totala bitraten för hela kanalen. Givet en tidlucka dvs 1/8 får vi i stället ca 78 kbit/s.
Den egentliga bitraten i en GSM-kanals enskilda tidlucka är 22,8 kbit/s och modulationen i GSM ger oss alltså 29% av maximalt möjlig överföring vid lägsta S/N.